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Abstract 

Bioprinting covers the precise deposition of cells, biological scaffolds and growth factors to produce desired tissue 

models. The main focus of bioprinting is the creation of functional three- dimensional (3D) biomimetic composites for 

various application areas. Successful creations of model tissues depend on certain parameters such as determination of 

optimum microenvironment conditions, selection of appropriate scaffold, and cell source. As the cell culture-based 

assays have vital roles in the biomedical field, bioprinted tissue analogs would provide unprecedented chances to 

study, screen, and treat diseases. Today’s 3D bioprinting technology is able to print cells and scaffolds simultaneously, 

which provides the opportunity for disease modeling. This paper presents a general overview of the current state of the 

art in bioprinting technologies and potential 3D cell culture systems now being developed to model microbial 

infections, host-pathogen interactions, niches for microbiota, biofilm formation, and assess microbial resistance to 

antibiotics. 
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1. Introduction 

Modern printing techniques that allow precise control over product design and development have revolutionized 

many areas, including art, education, material manufacturing, engineering, and medicine [1,2]. Bioprinting 

simultaneously combines living cells and biomaterials through a computer-aided (CAD) additive manufacturing 

process to generate two dimensional (2D) and even 3D bioengineered living constructs that mimic natural tissue 

characteristics. Due to its high repeatability and accuracy in microscale fabrication resolution, bioprinting technique is 

commonly used for tissue engineering (TE), regenerative medicine (RM), microbiology or other biological studies 

[3,4]. The applications of 3D bioprinting are specifically challenged with complexities such as the selection of 

biomaterials, cell types, growth and differentiation factors, and technical difficulties related to handling of living cells 

( due to their sensitivity to in vitro environment). Addressing these complexities requires the integration of 

engineering, biomaterial science, cell biology, physics, and medicine [2–6]. In this review article, we give a 

comprehensive summary of the current applications of 3D bioprinting technologies in modeling host-pathogen 

interactions and infectious disease mechanisms, niches for microbiota and researches of microbial resistance to 

antibiotics.  We also highlighted the potential implementation of other 3D cell culture techniques varying from 

scaffold-free and scaffold-based into bioprinting techniques to screen viral and bacterial infections on the mimicked 

3D tissue models. 

 

2. Bioprinting 

2.1 Concept 

In 3D bioprinting, biological materials, biochemicals, and living cells are precisely positioned to build 3D 

structures. Several approaches for 3D bioprinting, including biomimicry, autonomous self-assembly, and mini-tissue 

building blocks, are developed to fabricate 3D functional living human constructs with biological and mechanical 

properties suitable for modeling diseases and clinical restoration of tissue and organ function [2]. The bioprinter 

systems require distinct specifications of high resolution, high-throughput, ability to control dispensing of multiple 

bioinks (i.e., homo-/hetero-cellular, bioprintable, and biocompatible biomaterials) with different viscosities 

concurrently, ease of use, nontoxicity, cell viability, affordability. Consequently, for the precise dispensation of a 
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bioink, a bioprinter should include three essential elements: (1) a robotic motion (hardware) system, (2) bioink 

dispensers, and (3) computer-based software-enabled operational control to print bioink with satisfactory resolution 

[4–8]. Computer-aided design (CAD) software is required to generate a blueprint of tissue/organ design for the 

mechanical motion of a robotic system as the preprocessing step and dispensing systems. The motion system provides 

the movement to the bioprinter in x-, y-, and z-axes as the processing step, and finally, the dispensing system 

(pneumatic-, mechanical- or fluidic-driven) controls the accurate deposition of the medium. Then the bioink is 

deposited, solidified, and stacked layer-by-layer in the 3D bioprinter as the postprocessing step [1,3,8] (Fig 1). 

 

Figure 1. Illustration of 3D (bio)printing processes from the software designs of target tissue/organs to printed 

models. 

 

2.2 History 

The discovery of woodblock printing and the subsequent development of the industrial-scale printing in the 15th 

century facilitated the rapid reproduction of text and images and the dissemination of information. Printing had a 

revolutionary effect on society, affecting education, politics, religion, and language across the globe [2]. In 1986, 

additive manufacturing (AM), rapid prototyping (RP), free form fabrication (FFF), and 3D printing were initially 

conceived by Charles W. Hull.  After two years, bioprinting was first demonstrated by Klebe as cytoscribing 

technology, a method of micro-positioning biologics including collagen and fibronectin. In that study, cytoscribing 

was carried out using a Hewlett Packard (HP) inkjet printer and a graphics plotter for specific positioning of cells [9]. 
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With the first attempt of generating cartilage tissue in the shape of an ear on the dorsal of a mouse in 1997 [10], 

Vacanti and Langer opened up a great venue, where tissue engineering started to emerge in generating tissues in 3D 

[11]. In 1999, cells were printed with a laser-based bioprinting process by Odde and Renn [12], demonstrating that 

cells could be patterned in 3D to develop tissue analogs with complex anatomy biomimetically [1,8]. In the earliest 

2000s, Rolf Muelhaupt’s group at Freiburg Materials Research Center introduced an AM fabrication technique using 

3D plotting of thermo-reversible gels in a liquid medium. This group was the first to report the deposition of living 

cells using an extrusion approach [13]. Afterward and in 2002, an evolution in bioprinting took place when 

bioengineer Makoto Nakamura realized that the ink droplets in an inkjet printer were the same size as human cells 

[4,14]. In 2003, Boland and his coworkers started inkjet-based bioprinting by modifying an HP inkjet printer, and cells 

were successfully printed and patterned [8,15,16]. Until 2005, despite all 3D printers were expensive, proprietary and 

in industrial scale, costly, and closed nature of the 3D printing industry limited the accessibility of the technology to 

the exploration that could be done by end-users. The Fab@Home project which was initiated as the first multi-

material 3D printer available to the public satisfied the need. Since its open-source release in 2006, it has created a 

versatile and low-cost printer to accelerate technology innovation and its migration into the consumer space [17] (Fig 

2). Several researchers then attempted 3D printing of tissue scaffolds with and without cells, and several spin-off 

companies have emerged to commercialize breakthrough technologies worldwide [4,5,8,18–20]. 

 

 

Figure 1. Major milestones in the development of bioprinting technology. 
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2.3 Techniques 

The most promising technologies applied in bioprinting process require specific self-assembly and self-organizing 

capabilities of cells, and there are three major groups of techniques commonly used in manipulating cells in 

bioprinting: layer-by-layer (stereolithographic), line-by-line (extrusion-based), and droplet-based bioprinting [8]. 

The stereolithography (SLA) is a solid freeform, nozzle-free bioprinting method with the high printing quality, 

and speed, utilizes photopolymerization, a process in which a UV light or laser is directed in a pattern over a path of 

photopolymerizable liquid polymer, cross-linking the light-sensitive polymers into a hardened layer  [21–24]. SLA 

operates via a layer-by-layer process, where each 2D layer is cured in its entirety before moving to the next layer of 

the construct. As each layer is polymerized, the printing platform can be lowered further into the polymer solution 

allowing for multiple cycles to form a 3D structure. However, SLA has numerous restrictions such as the lack of 

biocompatible and biodegradable polymers, harmful effects from toxic photocuring reagents, the inability of complete 

removal of the supporting structure and the inability to form horizontal gradients in the constructs have been reported 

resulting from using this method [21,22]. 

Extrusion-based (solid free-form/fusion deposition) bioprinting is the most common and affordable biological 

and non-biological 3D printers for the fabrication of complex, multi-layered scaffolds and tissue constructs in 

biomedical applications. They use the potential energy of mechanical-, pneumatic- or solenoid micro-extrusion-driven 

system to extrude the bioink through a nozzle, to defeat surface tension-driven droplet formation, and print the 

cylindrical filament-formed bioink [22,25]. They can print vertically [22] and high viscosity bioinks such as complex 

polymers, cell spheroids, and clay-based substrates and very high cell densities for tissue formation [25]. However, 

they are only applicable for printing viscous liquids [22] and poses the potential for the distortion of cellular structure 

and loss of cellular viability [25]. 

In contrast, droplet-based bioprinting utilize thermal-, piezo- or acoustic-driven mechanisms to deposit droplets of 

cell suspension in a high-throughput manner and assembled drop-by-drop [1,2,8,23]. The approaches used in droplet-

based bioprinting can be classified into (1) inkjet bioprinting, (2) acoustic droplet election, (3) micro-valve 

bioprinting, and (4) laser-assisting bioprinting (LAP).  

The first inkjet printers used for bioprinting applications were modified versions of commercially available 2D ink-

based printers [2,23,26], and they have been more popular due to their essential properties such as wide availability 
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with low cost, ability for highly precise and fast printing [21,22,27], printing of low viscose biomaterials [22] with 

concentration gradients in 3D constructs [21]. Conversely, they generate unstable droplets at high printing frequencies 

due to inability to provide a continuous flow and slow printing process [22,27], and they cause thermal, mechanical, 

and shear stress to the cells [21,27] and cell desiccation/ sedimentation [28]. Moreover, they have poor vertical 

structure printability, and they can print limited printable materials because of the necessity of low viscosity materials 

and low cell densities [21,22]. Inkjet bioprinting can be continuous (CIJ), electrohydrodynamic (EHD) jet or drop-on-

demand (DOD) inkjet bioprinting, which, are commonly used non-biological and biological applications. In CIJ 

bioprinting, the pressure is applied to force the bioink through a nozzle, which subsequently breaks up into a stream of 

droplets to minimize its potential energy and surface tension [26,29].  

On the other hand, DOD inkjet bioprinting uses a non-contact technique that may use thermal, piezoelectric, 

electrostatic, or electromagnetic forces to expel successive droplets of bioink onto a substrate, replicating a CAD 

design with a printed tissue [1,29]. Moreover, DOD inkjet bioprinters are preferable than CIJ bioprinters for tissue 

bioprinting purposes because of their properties such as economical, handy to control, and accessible to pattern 

biologics. However, DOD needs high pressures to eject droplets through a nozzle with a small orifice diameter, which 

is harmful to cells. Oppositely, electrohydrodynamic (EHD) jet bioprinters utilize an electric field resulting from the 

electrical potential difference between the printhead and the substrate, to pull the bioink droplets through the printhead 

orifice as limiting the need for substantially high pressure, shear stress and induced cell damage [26,29].  

 Acoustic droplet ejection bioprinting relies on a gentle acoustic field generated by an acoustic actuator to eject 

droplets of cell-laden bioink solution through a nozzle. It is a quick, easy and viable method without mechanical stress 

on cells as depositing picoliter quantities of the medium or hydrogel encapsulating a single cell in a droplet because 

bioink is an open pool rather than in a nozzle, thus eliminating the exposure of cells to detrimental stressors such as 

heat, high pressure, and high voltage [26,29–31]. However, viscous bioinks are not dispensable, and there are no 

complete commercial systems available [26].  

Micro-valve bioprinting, which is a reliable, cheap, and secure method, operates with interchangeable 

electromechanical/solenoid valves to generate droplets of cell-laden bioink when a voltage pulse is applied to the 

valve [26,27,29,31]. Depending on the pressure and gating time, bioink with a wide range of printable viscosity [27] is 

dispersed continuously or drop on demand. Thus, cell damage because of high shear stress on cells during droplet 

ejection is limited, but cells can be sedimented, and larger droplets (50–300 µm) diameters than nozzle orifice 

diameter leading to a lower resolution are created [26,27,29].  
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LAP utilizes laser energy to selectively print and precisely pattern cells onto a substrate to deposit cells from a 

donor slide to a receiver slide without the need for a nozzle [8,21,22,27]. Initially developed to pattern metals (i.e.,  

computer chip fabrication) with high resolution [25], laser-induced forward transfer (LIFT) technology has been 

successfully applied to biological material, such as peptides, DNA and cells with high cell viability [2,27].  

LAP uses laser pulses to heat and vaporizes a solution containing bioactive contents (e.g., growth factors, cells), 

depositing the contents onto the scaffold with biomaterials in a wide range of viscosity [22,27] without damage from 

the laser, which could have a destructive effect on these factors. However, this process is costly and slow [21,22]. On 

the other hand, it can cause thermal damage due to nanosecond/ femtosecond laser irritation [22] and toxic effect on 

the cells because of the needed metal film [21,27]. Moreover, because of the non-uniform thickness of the transparent 

layer (ribbon), cell homogeneity is reduced at the low cell density, and it is challenging to incorporate multiple types 

of biologics [27]. 

Depending on the type of ink selected and the complexity of the final tissue construct, each bioprinting technique 

has specific properties and advantages/disadvantages depending on printability, resolution, deposition rate, scalability, 

bioinks, and biocompatibility, ease of use, printing speed and price, and commercial availability [8,23,25]. 

Comparison of the conventional bioprinting methods can be found in the table below (see Table 1). 

Table 1. Comparison of the conventional bioprinting methods 

Printing Technology Advantages and Disadvantages 

Stereolithography 

 

+ Printing time independent of complex geometries 

+  Good vertical printability 

+  Low cost [22] 

+ Light-sensitive hydrogels can be printed layer-by-layer 

[21] 

+ Solid freeform and nozzle-free technique [21,22] 

+ High accuracy [21,22] 

-  Applicable to photopolymers only 

-  Lack of biocompatible and biodegradable polymers 

[21] 

-  Lack of printing multi-cells  [22] 

-  UV light source is harmful to DNA and human skin 

and toxic to cells during photocuring [21,22] 
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Microextrusion 

 

+ Good vertical printability [22] 

+ Capable of printing various biomaterials and the 

ability to print high cell densities [22,25] 

- Only applicable for viscous liquids [22] 

- Potential distortion of cellular structure and loss of 

cellular viability [25] 

Inkjet 

 

+ Wide availability 

+ Ability to introduce concentration gradients in 3D 

constructs [21] 

+ Ability to print low viscosity biomaterials [22] 

+ Fast fabrication speed 

+ Low cost [21,22] 

+ High printable resolution/precision [21,22,27] 

- Inherent inability to provide a continuous flow and 

slow build process [22] 

- Droplet instability at high printing frequencies 

- Potential cell desiccation/ sedimentation [27] 

- Poor vertical structure printability 

- Limited printable materials/requires low viscosity 

materials and low cell densities 

- High cost and time consuming [21,22] 

- Thermal, mechanical, and shear stress to the cells 

[21,27] 

Laser-assisted printer (LAP) 

 

+ Nozzle-free, non-contact, easy process [8,21,27] 

+ High printing resolution and highly precise delivery 

control of ink droplets [21,22] 

+ Deposition of biomaterials in a wide range of printable 
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viscosity [22,27] 

+ High cell viability [27] 

- Thermal damage due to nanosecond/ femtosecond laser 

irritation [22] 

- Difficult to incorporate multiple types of biologics 

- Non-uniform transparent layer (ribbon) thickness and 

poor cell homogeneity of the coated ‘ribbon’ at a low 

cellular density [27] 

- Requires a metal film which is subject to cytotoxic 

metallic particle contamination [21,27] 

Acoustic droplet ejection 

 

+ No mechanical stress on cells during droplet ejection 

+ Easy and fast to fabricate [26,30] 

- Viscous bioinks are not dispensable 

- Unavailability of complete commercial systems [26] 

 

 

 

 

 

 

 

Microvalve (electromechanical/solenoid) 

 

 

+ Low cost 

+ Interchangeable nozzles which are cleanable from 

viscose bioinks [26] 

+ A wide range of printable viscosity 

+ A reliable system for high-throughput printing 

+ Easy operation [27] 

- Significantly larger droplet diameters than nozzle 

orifice diameter [26] 

- Cell sedimentation [27] 

- High shear stress on cells during droplet ejection 

[26,27] 
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2.4 Materials – bioinks 

There is a global research trend in medicine to develop biomaterials for creating biomedical devices, drug delivery, 

cell encapsulation, and implantation. Biomaterials are used to create an artificial extracellular matrix (ECM) to 

provide structural and functional support for the cells and tissue constructs (Fig 3). Different potential biocompatible 

materials are ranging such as naturally-derived, chemically-synthesized polymers including their modifications and 

composite materials. In the case of bioprinting, biomaterials need to be incorporated with bioactive molecules and 

viable cells to create functional structures. Bioinks are a distinct class of biomaterials made up of cellular material, 

additives (such as growth factors, signaling molecules), and supportive scaffolds which biomimic ECM structure 

[25,32]. Bioinks need to possess certain characteristics such as specific fabrication temperature, gelation (cross-

linking) kinetics, swelling, and bioactive components in addition to biocompatibility, bioprintability, affordability, 

scalability, practicality as well as resolution, mechanical/structural integrity, bioprinting/post-bioprinting maturation 

times and biodegradability. Therefore, hydrogels are generally used to mimic the natural ECM in the physiological 

body due to their high-water content and high permeability to oxygen, nutrients, and other water-soluble compounds, 

ability to protect cells/drugs and to be modified with specific ligands to create an environment for cell 

adhesion/proliferation [25,32,33]. 

 

 

Figure 3. Illustration of ECM structure having a dynamic 3D network of extracellular macromolecules, particularly 

proteoglycan complexes, collagen fibers, elastin, and other matrix glycoproteins. 
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Hydrogel-based bioink materials should have specific properties such as good shape fidelity, high zero-shear 

viscosity (paste-like consistency) [32] and controlled cross-linking to facilitate bioprinter deposition, suitable swelling 

characteristics, and short-term stability. These properties are required to ensure that tissue structures such as pores, 

channels, and networks do not collapse [2]. During bioprinting, a hydrogel with suspended cells is processed into a 

precisely defined shape, which is successively fixed by gelation, a physical cross-linking reaction depends on meshes 

of high molecular polymer chains, ionic interactions, and hydrogen bridges because of compatibility with biological 

systems such as growth factors and living cells [4].  

Natural-derived hydrogels such as Matrigel, collagen, gelatin, gelatin methacryloyl (GelMA), fibrin, alginate, 

chitosan/chitin, hyaluronic acid (HA) have been heavily utilized for regenerative medicine because they usually 

already contain specific bioactive regions that give them good cellular compatibility with the cells of interest. 

However, they have issues concerning immunogenicity, characterizing their intrinsic properties, variations in terms of 

properties between species, tissue, and the batch of production and relatively instability compared to their synthetic 

counterparts. Therefore, fully synthetic functionalized hydrogels such as Poly (2-hydroxyethyl methacrylate) 

(PHEMA), Poly (vinyl alcohol) (PVA), Poly (ethylene glycol) (PEG) that are also used as bioinks due to their benefits 

(e.g., highly tunable and consistent properties, and large-scale production capacity) [34]. Although hydrogels have 

good bioactivity, they are mechanically weak. Therefore, some thermoplastic materials such as polycaprolactone 

(PCL) and poly (lactic-co-glycolic acid) (PLGA) and other acellular materials like nanocellulose, hydroxyapatite 

(HA), and β-tricalcium phosphate (β-TCP) are also used to utilize soft materials, hydrogels with enhancing their 

mechanical strength and shape fidelity to generate functional, bioprinted tissue constructs made with hybrid bioinks 

[25,32,33,35]. 

 

3. Applications of Bioprinting In Medicine 

3D cell culture systems have developed as pioneering methodologies and have reached rising prevalence from a 

wide range of tissue engineering [36–39], regenerative medicine [25,31], infection biology [36,40,41] areas for the 

outlook to establish highly quantitative researches on the biological entities (e.g., cells, bacteria, and viruses) with 

spatially defined artificial ECM microenvironments. 3D cell culture systems provide artificial and functional tissue 

constructs serving as modular platforms which the most encouraging experimental models; hence, it displays many 

complex characteristics of in vivo systems. Traditionally, a top-down approach has been employed, which cells are 

seeded on top of the pre-made biodegradable scaffolds that provide sufficient mechanical support for a uniform 
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monoculture tissue layer. Alternatively, a bottom-up approach has been inducted, relying on the assembly from 

soluble components together with the cells as building hundred-micrometer-scale cellular constructs under conditions 

compatible with cell viability [42] (Fig 4). 

 

 

Figure 4. According to the “bottom-up” approach, single cells or organoids/spheroids are used as blocks for complex 

tissue structures. In contrast, the traditional “top-down” approach proposes to form a tissue structure by planting cells 

onto scaffolds at a particular shape and size. 

  

Various 3D cell scaffold-free (without biomaterials) culture strategies exist for the development and application of 

3D models of human tissues in vitro microenvironment, including ultra-low attachment microplates, bioreactors to 

generate micro-tissues (spheroids). Besides the scaffold-free 3D cell culture methods, many strategies have 

dependencies on the biocompatible scaffolds, which often require synthesis and fabrication processes (Fig 5). 

Therefore, reliable techniques have been needed for real-time monitoring of cellular responses, and variation of 3D 

culturing methodologies (e.g., 3D hydrogel scaffolds, 3D spheroids, 3D organoids) and biomaterials have been 

described to create connected tissues to improve function and, to overcome barriers resulting from traditional 2D cell 

culture systems such as well-plate, Transwell® (Corning, USA). Advances in 3D printing/bioprinting technologies 

have allowed creating complex constructs used in a wide range of medical applications such as dentistry [43–46], 

drug/pharmaceutical fabrication [47–49], in vitro drug screening [50–52], surgical instruments [53–55], medical 

training and education [56–58], TE and RM [59–62]. 
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Figure 5. 3D cell culture techniques are leading to create more accurate in vitro tissue models. 

RM is a multidisciplinary scientific field that has rapidly incorporated TE principles with life sciences to simulate 

native tissues for replacement of damaged tissues or reparation of malfunctioning organs. Traditional TE strategy 

follows the top-down approach to keep the 3D shape and mechanical properties of the mimicked tissue, to support in 

cell attachment, and to provide a substrate for cell proliferation into 3D functioning tissues.  In general, the application 

of scaffolds in RM is straightforward but still subject to some difficulties like the lack of accuracy in cell placement, 

limited cell density, needs of organic solvents, challenges in integrating the vascular network, insufficient 

interconnectivity, inability to control distribution and dimensions of the pore, and difficulties in manufacturing 

patient-specific implants [63]. 3D printing/bioprinting technologies are encouraging to overcome these difficulties of 

applications of the scaffolds in RM. In the case of infection biology studies in RM, 3D bioprinting strategies are a new 

paradigm. Although in vivo models are still crucial for infection studies, the selection of the model might change all 

the results. Therefore, 3D in vitro models are valuable research tools to generate data in agreement with in vivo 

reports, and they have helped researchers to reconsider part of the knowledge derived from 2D in vitro cell cultures 

experiments. 

Currently, 3D cellular in vitro models are the most promising models able to acquire information about the host 

response to infections, especially for difficult-to-culture pathogens. Most in vitro infection studies have been 

performed using cell lines; however, researchers try to develop complex 3D model systems with different cell types 

including primary/ stem cells, immune cells, e.g., T cells, macrophages under different physical conditions such as 

different surface/ oxygen tensions, physical forces, geometries of ECM and explore the integration of cellular signals 

in regulating infection to better recapitulate the native tissue [64–67]. Because of that, the localization of ECM 
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deposition can impact the process of the in vitro infection, reconstituting a protecting barrier and preserving host cell 

integrity against invasion. Moreover, a significant challenge for the study of host-pathogen mechanisms in 3D is the 

use of biomaterials that does not affect very similar cell exposure to pathogens and exclude a non-physiologically 

manner interaction [68]. Therefore, these difficulties have motivated many groups toward the development of 

bioprinting and new bioink composition approaches.  

4. Bioprinted Models For Virus Infections  

Viruses are highly contagious and present a conuning public health threat to human [36]. Nowadays, viral 

infections continue to emerge quickly, causing significant morbidity and mortality worldwide as well as an economic 

burden [69,70]. Animal models widely used in preclinical studies for viral infections are used to evaluate vaccines and 

potential antiviral drugs [71–74]. However, having limited fully representative animal host models [75,76], numerous 

human pathogens need elaborated models to be subjected [70,76–78]. Indeed, one of the significant factors to be 

considered in selecting an animal model for virus studies is the susceptibility of the animal model to the pathogen. For 

instance, mice have been commonly used as an animal model for virus studies (i.e., influenza) and evaluation of 

theranostic efficiency of drugs and vaccines. However, it has become a necessity to use humanized systems to develop 

models that are closest to reality and progress in diagnosis and treatment as it is difficult to translate data from mice 

into human physiology. Thus, researchers have focused on engineering approaches to study virus-associated cell 

culture models to increase knowledge regarding the underlying mechanisms of viral infections and constituted a basis 

for future studies [36]. Recent studies have shown that advanced 3D cell culture models have the potential to 

recapitulate the native microenvironments of virus-associated diseases to investigate the structural and functional 

changes of ECM through the physical, chemical, and biological aspects.  

For several pathogenic viruses (i.e., papilloma), epithelia are the site of replication and infection. Therefore, studies 

related to host-virus interactions are mostly performed via 3D organotypic epithelial raft cultures as they present a 

relevant model for investigating in vitro virus replication and pathogenesis as well as studying the effects of antiviral 

agents [41,79–83]. The source of epithelial tissues may be different parts of the body (larynx, cervix), and the 

primary/immortalized cell lines can be used in the raft culture models [41,80]. To this respect, human papillomavirus 

(HPV) has been demonstrated with 3D organotypic epithelial raft cultures as well as human immunodeficiency virus 

(HIV), human herpesvirus (HSV), varicella-zoster virus (VZV), and adenovirus (AdV). Apart from the 

physiologically relevant raft culture models, 3D organoids [84], and multicellular spheroid systems [85] have been 

used to study AdV.  
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Beyond the static 3D cell culture models, microfluidic platforms offer multi-compartmental 3D structures to mimic 

native tissues and provide an opportunity to observe physical and biological changes under the dynamic conditions 

individually. Although the applications of microfluidics in virology are still in progress, their capability to be used for 

disease modeling has been proven in many studies. For instance, Villenave et al. (2017) [86] used coxsackievirus B1 

(CVB1) to model enteric virus infection using dynamic gut-on-a-chip microfluidic platform where human villus 

intestinal epithelium was cultured. It is reported that the platform running under conditions of physiological 

peristalsis-like motions comprising relaxation of circular smooth muscles while maintaining luminal flow is suitable to 

model in vitro enteric virus infection and investigate mechanisms of pathogenesis. Similarly, the demand for 

miniaturized cell culture systems serving as a platform for studying hepatitis B virus (HBV) infections on hepatocyte 

physiology led researchers to focus on microfluidics and  HCB associated liver disease was modeled using human 

HepG2 hepatocellular carcinoma cells and rat hepatocytes [87]. Similar to microfluidics-based studies, dynamic radial 

flow [88,89] and rotating wall vessel [90,91] cell culture bioreactor systems have been used to study hepatitis C virus 

(HCV) and hepatitis E virus (HEV) infections (see Table 2). 

 

Table 2.  An overview of 3D cell culture models for viral applications 

3D Model Study Target Cell Lines Virus  Ref. 

Spheroids / Organoids 
Virus-mediated gene transfer Epithelial HEK-293 cells 

AdV 
[84] 

Glioblastoma Glioma cells [85] 

Organotypic raft cultures 

Infection and life cycle 

investigation Primary, gingival and 

immortalized human 

Keratinocytes 

HPV [80,82] 

Evaluating anti-viral drug 

efficiency 

VZV [41] 

HIV [79,81] 

Virus replication  HSV [80] 

Radial flow and rotating-wall 

vessel bioreactors 

Evaluating anti-viral drug 

efficiency and virus replication 

Human hepatocellular carcinoma-

derived cell line HCV 
[88,89] 

Viral infection  Hepatoma-derived cell line [91] 

Virus replication Hepatocarcinoma cells HEV [90] 

Microfluidics platforms Viral infection 

Rat hepatocytes and human 

HepG2 cells 
HCB [87] 

Human Caco2 intestinal cells CVB1 [86] 
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Recently, 3D bioprinting, among many popular tissue engineering approaches, brings new insights in the study of 

virus and development of viral infection models having the ability to mimic in vivo viral life cycle along with cell 

cultures [92,93] and the latest virus studies supported by 3D bioprinting technology have mostly focused on the liver 

[94], lung [93] and brain [95,96] disease modeling.  Bioprinting enables to fabricate cell-laden scaffolds (see Table 3) 

and a 3D printed scaffold may contain many different cell types with various biomaterials within the structure. As the 

combination of material and cells  have to be well defined in the patterned network, it is possible to generate human 

cell-based scaffolds to reflect human physiology better than animal models for virus studies [69,93,94,97,98].   

 

Table 3. An overview of virus infection models with cell-laden and cell-free bioinks

Bioink Type Purpose Cell Line Virus Bioink  Bioprinter Ref. 

Cell-laden 

Liver infection 

model 

Human bipotent 

hepatic 

progenitor cells 

(HepaRG) 

Human 

adenovirus  

Gelatin, sodium alginate, 

human ECM mixture 
Microextrusion [92] 

Nervous system 

infection model 

Superior 

cervical 

ganglia (SCG) 

and 

hippocampal 

neurons 

Pseudorabies 

virus  
- Microextrusion [95] 

Respiratory 

system 

infection model 

Human alveolar 

A549 cells 
Influenza A  

Gelatin, alginate and matrigel 

mixture 
Microextrusion [93] 

Virus-

infected cell-

laden 

Tracing cells in 

vivo 

Mouse induced 

hepatocyte‐like 

cells (miHeps) 

mCherry 

lentivirus 
Alginate Microextrusion [94] 

 

Recent research profiles have shown the bioprinted network including arginyl-glycyl-aspartic acid (RGD), the most 

common tripeptide sequence on ECM, would induce cell migration, adhesion and proliferation [99–101] and that it is 

essential to prepare well-mixed bioink including suspended cells in growth media and hydrogel solution in bioprinting 
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process (Fig 6A). Hiller et al. (2018) [92] presented a study describing the optimization of a bioink mixture 

composing of alginate, gelatin, and human ECM to print human HepaRG liver cells with a pneumatic extrusion printer 

for transduction and infection studies through a liver model. Similarly, Berg et al. (2018) [93] manipulated the same 

bioink mixture by using matrigel instead of human ECM to provide a scaffold for human alveolar A549 cells.  

 

 

Figure 6. Schematics of the creation of multifunctional living materials. (A) Pathogens and/or animal cells are 

embedded in the bioink formulations to utilize ECM for bioprinting 3D tissue constructs. (B) 3D bioprinting 

technologies are capable of creating complex constructs in a wide range of TE and RM applications such as in vitro 

drug screening, antimicrobial activity of 3D tissue constructs, surgical instruments, host-microbiome interactions, 

disease modeling, and microfluidics. 

 

Although the incorporation of cells in bioink mixture is still a progressing field of 3D bioprinting-based studies, 3D 

printing has been used as a manufacturing technique in TE applications, especially for scaffold formation and TE-

based cell/gene therapy and implantation, for decades. For instance, Wang et al. (2014) [102] used 3D printing 

technology to produce a virus-activated matrix as a porous bone scaffold to promote endothelial cell activation, 

migration, and adhesion. They used ceramic, b-tricalcium phosphate (b-TCP) and HA to get ink mixture. A human-

safe virus is genetically engineered to generate filamentous phages containing RGD on the side walls. Researchers 

have recorded that it is possible to induce differentiation of mesenchymal stem cells (MSCs) into osteoblasts by using 

RGD phages without any additional osteogenic supplements [96,102]. As the gene therapy provide excellent solutions 
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for many diseases, Yang et al. (2017) [103] focused on glioblastoma gene therapy by using vesicular stomatitis virus 

(VSV) as plasmid DNA encoding VSVMP which can eliminate cancer cells and induce an anticancer immunity 

response.  

5. Bioprinted Models For Bacteria And Biofilm Formation 

Cell cultures formed of a single cell type have given significant insight into understanding host-pathogen 

interactions and infectious disease mechanisms preclinically. However, these limited in vitro TE models lack many 

primary characteristics present in the native, 3D dynamic host microenvironments that are associated with host-

pathogen interactions; regulating infection, multicellular complexity, bacterial microbiota, gas exchange, and nutrient 

gradients, and physiologically relevant biomechanical forces [64] (e.g., fluid shear, stretch, compression). 3D cell 

culture techniques such as spheroid/organoid cultures [104–108], explant/organotypic cultures [109–113], polymeric 

scaffolds [40,114,115], natural [116–132] and synthetic hydrogel [133–141] scaffolds, and microfluidics [141–153], 

programmable and customizable platforms to engineer cell-laden constructs have been under development to mimic 

host tissues.  The development of such 3D tissue systems would allow numerous potential applications including  (1) 

modeling host-bacterial microbiome interactions in vitro 3D microenvironment (see Table 4) [40,109–114,154–158], 

(2) testing the antibacterial activity of 3D tissue constructs [37,38,141,143,145,153,159–165] and, (3) biofilm 

formation [166,167]  (Fig 6B). 

Table 4. Potential experimental 3D cell culture models that simulate host-microbiome interactions in the human 

tissues 

Model Format Target Tissues Potential Bacteria Ref. 

3D spheroids / 

organoids 

• Blood Vessel 

• Intestinal 

• Lung 

• NA 

• NA 

• S. typhimurium 

[104,106] 

[105] 

[107,108] 

3D organotypic / 

explant cultures 

• Gingiva / Oral 

• Intestinal / Gut 

• Lung 

• Skin 

• F. nucleatum 

• Recombinant E. coli (EcN) 

• S. aureus 

• S. aureus, D. nodosus 

[110] 

[111] 

[156] 

[109,113] 
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3D Polymeric Scaffold 

• Bone 

 

 

• Skin 

• NA – various issues 

• E. coli, S. aureus, P. 

nigrescens, P. gingivalis, S. 

sanguinis, E. faecalis, S. 

mutans 

• S. aureus 

• S. aureus 

[37,115,159,161,165,166] 

 

 

 

[40] 

[164] 

3D Hydrogel Scaffold 

• Blood Vessel 

• Bone 

 

• Intestinal / Gut 

• Kidney 

• Liver 

• Lung 

• Skin 

• NA 

• P. aeruginosa, E. coli, S. 

aureus, S. epidermidis 

• E. coli 

• NA 

• NA 

• H. influenzae 

• S. aureus 

[120,129,152] 

[125,137,154,167] 

 

[114,136] 

[138] 

[121,124,133,134,139] 

[112,135] 

[116,118,119,123,126–

128,130–

132,140,141,160,162,163] 

Microfluidics (chip) 

systems 

• Blood Vessel 

• Bone 

• Kidney 

• Liver 

• Skin 

• Intestine / Gut 

• P. aeruginosa 

• S. epidermidis 

• NA 

• NA 

• NA 

• Lactobacillus acidophilus, 

Lactobacillus plantarum, 

Lactobacillus paracasei, 

Bifidobacterium breve, 

Bifidobacterium longum, 

and Bifidobacterium 

infantis 

[149,155] 

[144,153] 

[148,151] 

[142,146,147,150] 

[126]  

[168] 

Plenty of studies within microbial ecology supported that niche-based, which plays an essential role in mediating, 

where they perform their neutral processes such as reproduction, mobility, and involvement in cooperative and 

predatory relationships is jointly responsible for microbial community assembly [169–172]. Bacteria perform these 

activities because of their adaptive metabolic activity and created biofilms as complex extracellular polymeric 
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substances (EPS) that warrant survival even in hostile environments where they can communicate via short-range 

physical and chemical signals, interactions, and other adaptive phenotypes, adapt their mechanical properties under 

stress to match conditions imposed by the surrounding environment [171–174]. Therefore, mimicking natural biofilms 

is convenient and efficient for biotechnological applications. Bacteria communicate via signal molecules, which allow 

bacteria to monitor and alter functional behaviors in the microenvironment.  During interaction with one other, 

bacteria produce, release, sense, and respond to chemical inducers. This phenomenon is named as quorum sensing, 

and it regulates bacterial population density by secretion and detecting of extracellular signals [175,176]. In the scope 

of microbial communications, new approaches have emerged to establish relevant structures for cell-cell, cell-ECM, 

and host–pathogen interactions. Besides, artificial microenvironments are useful tools as they are supporting microbial 

cell viability [130,177,178]. Recently, bacteria-associated 3D bioprinting applications have been focused on 

observation of microscale communications through the spatial configuration of populations, observation of quorum 

sensing mechanisms and fabrication of suitable biomaterial for microbial microenvironments [173,176,179,180] (see 

Table 5). 

Table 5. An overview of artificial ECM for bacterial communication and regulation of microenvironments 

Purpose Bacteria Bioink Bioprinter Ref. 

Printing bacterial spores on to the flexible 

material 

Geobacillus 

stearothermophilus and 

Bacillus atrophaeus 

Guar gum and 

borax 
Inkjet [178] 

Investigation of photopatterned microstructures 

to single bacteria 
Bacillus subtilis 

Bovine serum 

albumin (BSA) 

and riboflavin 5′-

monophosphate 

sodium salt 

hydrate  

Two-photon 

direct laser 

writing 

[179] 

3D printing of bacterial cultures for artificial 

microenvironment construction 
E. coli Sodium Alginate Microextrusion [177] 

Real-time observation of the quorum-sensing 

mechanism 
P. aeruginosa 

Bacteria included 

gelatin and 

bovine serum 

albumin 

Microscopic 

three-

dimensional 

printing / 

[176] 

Observation of cell-cell interactions in bacteria 

community 

S. aureus 

and P. aeruginosa 
[173] 
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 multiphoton 

photolithography  

 

Demonstration of tunable photoresponsive 

material manipulation 
P. aeruginosa 

Protein-based 

hydrogels 
[181] 

Developing 3D printed scaffolds for the growth 

of bacteria 
E. coli and S. cerevisiae 

Alginate-gelatin-

agar 
Microextrusion [130] 

Generating predictive models for microbial 

growth 
E. coli   and S. enterica Agarose Microextrusion [180] 

Biofilms are formed in a non-immobilized state at a variety of surfaces and interfaces by depositing a layer of 

bacteria in nature, and they are initially suspended in a fluid culture medium on the desired substrate in the 

biotechnological applications. There are several immobilization approaches such as adsorption on surfaces, cross-

linking, encapsulation, and entrapment for providing bacteria with a free-formed, defined geometrical 

microenvironment to keep metabolic activity with increasing the production yield to form/degrade of compounds, 

chemicals, biopolymers, enzymes, and proteins relevant for the food, medical, biotechnology and chemical industries. 

Naturally, bacteria produce their biofilms in the form of protective gels with very diverse mechanical properties (Fig 

7).  
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Figure 7. Schematics of the bacterial biofilm formation cycle 

Therefore, using bacteria as the programmable biochemical machinery is promising. Researchers try to 

create “living materials” with controlled self-supporting structures with complex 3D geometries, 

compositional, and physical attributes of microhabitats and dynamic metabolism via 3D bioprinting platforms 

[181–183] (see Table 6). As a proof of concept, Schaffner and colleagues [174] selected two different species, 

A. xylinum and Pseudomonas putida (P. putida), to develop living materials for both bioremediation and 

biomedical applications. P. putida, a known phenol degrader, are able to form an interface between air and 

water by secreting amyloid fibers. To benefit from this feature of bacteria, culture was incubated and 

embedded in a hydrogel mixture consisting of HA, k-carrageenan, and fumed silica to create a functional 

bacteria-derived bioink (Flink). In another study, to pattern bacteria communities, P. aeruginosa were used 

similarly. To control EPS and biofilm formations, researchers focused on optogenetic manipulation of second 

messenger cyclic dimeric guanosine monophosphate (c-di-GMP) levels which regulate intracellular signaling 

process in numerous bacterial species [184].  

Table 6. An overview of 3D bioprinting applications with bacteria-associated bioinks 

Purpose Bacteria Bioink Bioprinter Ref. 

Biocatalytic process of particulate 

monooxygenase (pMMO) for selective 

methane conversion 

Methylococcus 

capsulatus 
PEG-pMMO 

Projection 

microstereolithography  
[185] 
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Observation of microbial community 

interactions by patterning bacteria on 

agar, glass, and paper surfaces 

Paenibacillus 

dendritiformis T and 

P. dendritiformis C 

Bacteria included 

carboxymethyl 

cellulose, xanthan gum 

and gum arabic  

Screen printing [182] 

Demonstration of patterned living 

materials, combining 3D printing and 

genetic engineering  

E. coli 
Plasmid containing 

alginate 
Microextrusion [183] 

Bioremediation and biomedical 

applications 

P. putida and 

A. xylinum 
Functionalized HA Microextrusion [174] 

Optogenetic manipulation of engineered 

strains 
P. aeruginosa 

Self-produced EPS 

matrix 
Microprinting [184] 

  

As the biomaterial-depended in vitro cell culture techniques have a vital role in the biomedical field, there 

is an expanding demand for biocompatible materials to functionalize engineered models. Biocompatible 

polymers are preferred as they can be designed and synthesized through the desired properties.  Although 

using both natural and synthetic polymers as bioink is common, current studies indicate that synthetic 

polymers are lack of biocompatibility, biodegradability, and bioactivity, and it is challenging to characterize 

natural polymer such as alginate, cellulose, chitosan [39].  As it was mentioned at previous section (see 

section 3.1.2), Ulusu et al. (2017) [186], generated a new achievement to overcome this problem by using 

protein as a bioink instead of polymer. They used Caf1 protein which is able to remain stable and bioactive 

under the extreme conditions like high pH levels, salt, and chemical concentrations and reported that  Caf1 

protein was a suitable component for 3D cell culture applications.  In addition to usage of protein as a part of 

bioink in biomedical applications, Blanchette et al. (2016) [185] widened their perspectives and performed a 

study in which enzyme, particulate methane monooxygenase, was mixed with polyethylene glycol diacrylate 

(PEGDA) to construct a biocatalytic polymer to observe conversion of methane to methanol.  
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6. Bioprinted Tissue Systems Using Bacteria 

Bacteria generally grow within structured 3D inhabitants formed of multiple bacterial species in the human 

body. Organization of each bacteria and bacterial populations as aggregates play critical roles in community 

characteristics and communication. Accordingly, geometry may affect the pathogenicity and viability of 

bacteria. 3D printing of bacterial communities provides chemically interactive, native-like physical 

arrangement with a defined size, shape, and density [173]. There are different approaches to develop new 

platforms for TE-constructs in particular for skin and bone tissue engineering using live bacteria, bacteria-

produced materials, or functionalized materials preventing bacterial infections (see Table 7).  

Table 7.  An overview of the use of bacteria for bioprinted tissue engineered-models. 

Applications Purpose Cell Line Bacteria Bioink  Bioprinter  Ref. 

Innovative 

approaches to 

fabricate TE 

platforms 

Decellularization to 

create patterns in 

interconnected 

micropores/microchann

els in the scaffold for 

TE applications 

Murine 

embryonic 

fibroblasts 

(NIH-3T3) 

Gram negative-

bacteria  

(E. coli) 

Agarose 
Microextrusion 

(custom-made) 
[187] 

Production of 

miniature 

drug/antibiotic-

screening platforms 

Human 

kidney cell 

line 293 

Green 

fluorescent 

protein-

expressing E. 

coli 

Alginate and 

Agar 

Thermal inkjet 

bioprinting 
[188] 

Bacteria-

produced 

materials for TE 

Immobilization of 

bacteria in a 3D matrix 

to produce bacterial 

cellulose (BC) 

scaffolds applicable for 

NA A. xylinum 
Functionalized 

HA (Flink) 

 

Microextrusion 

 

[174] 
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personalized skin 

transplants 

Generation of 3D 

hierarchical scaffold 

mimicking natural 

intervertebral discs 

(IVD) 

Nucleus 

pulposus 

cells and 

annulus 

fibrosus cells 

A. xylinum BC NA [162] 

Generation of bacteria-

produced Caf1 

polymers applicable for 

3D cell culture and 

wound healing 

NA 

Transformed 

competent E. 

coli cells with 

pGEM-T Caf1 

plasmid 

Caf1 Inkjet printer  [186] 

Antibacterial 

modification of 

biomaterials 

with gel film 

Generation of 

Carboxymethylated-

Periodate Oxidized 

Nanocellulose 

Constructs for wound 

dressing applications 

NA P. aeruginosa 

Pinus radiata 

based-

nanocellulose 

Microextrusion [189] 

Antibacterial 

modification of 

biomaterials 

with np 

Generation of material 

with antibacterial 

property and 

osteogenic capability 

and a high potential for 

bone defect therapy 

and reconstruction 

Rabbit bone 

marrow 

stromal cells  

E. coli 

β-TCP 

bioceramic 

scaffolds 

coated with Ag 

Np - GO 

nanocomposite  

3D printer 

(developed by 

the Fraunhofer 

Institute for 

Materials 

Research and 

Beam 

Technology) 

[190] 
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Fabrication of 

interconnected and 

well-ordered 

microporous 

antibacterial scaffolds 

for bone TE 

applications 

Homo 

sapiens bone 

osteosarcoma 

cells 

(MG63) 

E. coli 

nMgO 

modified poly 

(3-

hydroxybutyrat

e-co-3-hydroxy 

valerate)  

Selective laser 

sintering  
[191] 

Fabrication of anti-

infective grafts for 

bone TE applications 

Human 

mesenchymal 

stem cells 

(hMSCs) 

S. aureus, S. 

epidermidis, 

25 methicillin-

resistant S. 

aureus 

Quaternized 

chitosan 

/PLGA / HA 

4th generation 

3D 

BioplotterTM 

2  

[192] 

Functionalizatio

n of biomaterials 

with antibiotics-

loading 

Fabrication of 3D 

printed antibiotics-

loaded biodegradable 

polymeric scaffold for 

regenerating bone 

tissue 

RAW 264.7 

Cell Line 

murine 

Macrophage 

E. coli and S. 

aureus 

Tobramycin-

loaded 

PCL/PLGA 

Multi-head 

deposition 3D 

printing system  

[193] 

Fabrication of new 

bioactive glass (BG)- 

polymer - antibiotic 

composite films for 

stainless steel implant 

coatings 

MG63 cells 
E. coli and S. 

aureus 

BG - 

Polymethyl 

methacrylate 

 

3D printing 

with the 

matrix-assisted 

pulsed laser 

evaporation 

method 

[194] 

 

One of the innovative approaches is to use live bacteria as the sacrificial porogens for decellularization to 

create patterns in a 3D printed scaffold, which is broadly applicable and compatible with tissue-specific 

applications [187]. In such a study, the bioprinting technology was used to produce miniature drug-screening 
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platforms, which realistically and inexpensively evaluate biochemical reactions in a picolitre-scale volume at 

a rapid rate to stimulate drug/antibiotics discovery for developing countries [188]. 

In another study, Acetobacter xylinum (A. xylinum) was cultured in a specific hydrogel ink, called Flink, to 

create a functional 3D matrix for immobilization of bacteria to produce bacterial cellulose (BC) used for 

personalized biomedical applications [174]. As an example, A. xylinum-produced BC was used for the 

generation of 3D hierarchical structures containing type II collagen-based nucleus pulposus (NP) with NP 

cells and BC-based annulus fibrosus (AF) with AF cells for mimicking natural intervertebral discs (IVD) to 

act as a replacement for the therapy of degenerative disc disease [162]. Ulusu et al. (2017) [186] used 

transformed Escherichia coli (E. coli)-produced capsule-like antigen fraction 1 (Caf1), as a well-defined, 

bioactive and thermostable 3D  scaffold for 3D cell culture and wound healing applications.  

Most TE studies generally focused on the production of antimicrobial biomaterials or 

modification/functionalization of biomaterials utilized for implantation. In majority of the cases, the  

modification of biomaterials was carried out by forming gel films- or nanoparticle (Np) coating. In a study, 

plant-based nanocellulose was printed in a 3D porous structure for modifying film surfaces as a bio-

responsive, elastic gel to carry/release antimicrobial components for wound dressing applications [189]. Also, 

Yang et al. (2016) [192] created  3D chitosan-based polymeric nanocomposite porous scaffold with high 

potentials such as less risk of antibiotic-resistance, repairing infected cortical/cancellous bone defects and the 

restoration of infected bone defects. Moreover, Zhang et al. (2017) [190] developed a combination of a 3D-

printing method and a layer-by-layer coating technique to prepare antibacterial silver - graphene oxide 

nanocomposite coated-bioceramic scaffolds for bone defect therapy and reconstruction. Similarly, researchers 

fabricated nano-magnesium oxide modified polymeric scaffolds with 3D interconnected and well-ordered 

microporous structures, and evidenced functional advantages such as intense antibacterial activity, cellular 

adhesion, proliferation, and osteogenic differentiation [191].  

On the other hand, antibiotic loading is used to fabricate modified-functional scaffolds to improve the anti-

inflammatory, bactericidal effects. As an example, Shim et al. (2015) [193] generated 3D printed antibiotic-

loaded biodegradable polymeric scaffold which is capable of eradicating chronic osteomyelitis and 

regenerating bone tissue, which would be a promising solution as a carrier for delivery of antibiotics in 

orthopedics. In another example, Floroian et al. (2016) [194] fabricated antibiotic loaded-bioactive glass-
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based polymeric composite films to coat stainless steel implants, and showed an anti-biofilm/antimicrobial 

activity. 

7. Summary and Future directions 

Microbial systems have been studied in vitro by focusing on the interaction of a microorganism with a 

single host cell cultivated as 2D monolayers. Although this reductionist approach has advanced our 

understanding of mechanisms that underlie infection and disease, the correlation of in vitro and in vivo results 

has been challenging.  Recent technological advancements in the field of bioprinting and 3D cell culture have 

revealed new approaches to model microbial infections, host-pathogen interactions, niches for microbiota, 

biofilm formation, and determine microbial resistance to antibiotics. Spheroid/organoid cultures, 

explant/organotypic cultures, polymeric scaffolds, natural and synthetic hydrogel scaffolds, and microfluidics, 

programmable and customizable platforms to engineer cell-laden constructs are among the most widely 

reported techniques for modeling host tissues and studying various diseases.  3D organotypic epithelial raft 

cultures, gut-on-a-chip, liver-on-a-chip, and dynamic cell culture vessels  have been applied for modeling 

virus infections (i.e., HPV, HIV, HSV, VZV, ADV, CVB1, HBV, HCV, and HEV).  3D bioprinting enables 

the fabrication of human cell-based scaffolds (i.e., cell-free bioink and bioink-cell mixture) that can be used as 

surrogates to replace animal models and study in vivo like physiologial conditions (including cell migration, 

adhesion and proliferation).  Various 3D printed models were particulary developed for investigating quorum 

sensing, bacterial biofilm formations (Geobacillus stearothermophilus, Bacillus atrophaeus, Bacillus subtilis, 

E. coli, P. aeruginosa, S. aureus) and gene therapy. In the future, a remarkable emphasis is expected to be 

devoted to the design and formulation of various bioinks, where cell viability, cellular distribution, and 

efficiency of infection will be the key parameters for optimization. We expect the integration of modular 

infectious units with different organs-on-chips, for modeling viral and bacterial infections, where infectious 

units can be added or removed for a more realistic assessment of the pathologies and effects on respected 

organs. With the emergence of 4D printing, “intelligent” 3D constructs will be printed which can respond to 

external stimuli including pressure, heat, electric current, ultraviolet light, leading to a desired change in the 

shape or function of the construct. Despite the current achivements, considerable research is still required for 

the utilization of in vitro infection models as a standard approach in preclinical studies and personalized 
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treatments in clinical settings. But the establishment of numerous start-up companies and the rapid growth in 

the field of tissue and microbial engineering will expedite the arrival of such systems into real-field 

applications and thereby advancing efficent tissue models to control and eliminate infectious diseases.  
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